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The problem of stability of triangular constant Lagrange solutions of the plane 
unrestricted three-body problem is considered in nonlinear formulation. 
Regions of stability for the majority of initial conditions and for formal stabil- 
ity are derived in the parameter plane of the problem. It is shown that when 
resonance relations are satisfied, Liapunov instability occurs or (in one of the 
resonance case) stability of finite order exists. 

1. Let us consider the plane motion of three points Ai, As, As of mass ml, 

m2, ms, respectively, mutually attracted in conformity with Newton’s law. We 

introduce in the plane of motion the inertial barocentric system of coordinates OXY 
and the Jacobi system of coordinates ql, q2, q3, q4 in which q1 = AlA and 

Y and q3 are projections 

:A, (Ao 

of vector 

is the center of mass of system 
A, and A2) on directions parallel and 

perpendicular to vector A,A,, and qQ 
is the angle between vector A,A, and 

the OX -axis. Configuration of the 
system is completely defined by coordin- 

ates ql, q2, q3. The system of differential 
equations defining the variation of these 
coordinates can be written in the canonical 

form [l] 

Fig. 1 

dq, 8H C3H 

dt=v’ 
(Ip, 

dPi 
- (1.1) 

dt = - aq, 

(i = 1,2,3). 
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where r is the area integral and f the gravitational constant. 

The equations of motion in the three-body problem admit particular solutions cal- 

led constant Lagrange solutions in which the three moving points constitute an invari- 
able equilateral triangle with sides of length a [l, 21. The triangle rotates at const- 
ant angular velocity 0 about the system center of mass. For the Lagrange solution 
we then have r # 0 and 

MI = ml + m, + m,, M2 = m1m2 + m2m3 -t mgml 

We carry out in system (1.1) the canonical substitution of variables 

qi = axi = + r2 M,Pi, 
M&.2 

pi&?!p yi (i = I, 293) 

0f valency rivq / M, and introduce the new Independent variable v defined by 
for mu la 

dv -=“=f&lJ 
dt 1 

i.e. in the constant Lagrange solution v = q4. In new variables the equations of 

motion are of the form 

dx. ajp 
2 dyi 

dv =ayi9 ?!if?_ (i = 1,2,3) dv = - axi 
( 1.2) 

ff* _ (ml i- ma) Ml - 
2mlm2 

x2Y3 + x3!!2 11 2 + 
Ml2 2m3 (ml + m2) 

(Y22 + y32) - & (T + T + F) 

ras2 = ( m-J;2 x1+ 52 2+x32, 
1 1 

rls2 = 
( 

m2 

ml+m2 
x1+ 52 

j 
'+x32, r12 = ~1 

The Lagrange solutions correspond to equilibrium positions of system (1.2) 

Xl” = 0 1, x2O = 2;1r+m;2) ( x3O = & 2 (1.3) 

ylo = 0, y20 = F m+$mz) _J$ Y30= 
ms (ml - 4 

1 Ml2 

All subsequent analysis relates to xs’ = + r/z / 2, since it is also valid for 

xso = - 1/z/ 2. 
We introduce the notation 

a= 
ma 

B= 
ml-m2 

mli- m2+m3 ’ ml + m2 ’ 

Y= 
mlm2 1 - #v _ 

ml2 +- r+m2 -,- m22 3 + B” 

and carry out in system (1.2) the canonical substitution of variables 

x1 = xi, Yl = Yl 03" + 3)V - 4 
x2 I= gx, - I/3x,, Y, = (BY, - 1/%)(1 - 4 

%i = ?% + fix,, Y, = (VW + BY,)(l - 4 
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of valency (ps + 3)(1 - a). In the new variables the equations of motion are of 
the form 

dX. 
1 i?K ayi (1.4) 

dV =q-’ 
-= + (i = 1,2,3) 

aV 

K=+[Y12++(+ + $ - X?.Y3 + X3Y2j2] + (1.5) 

4-(Y22_tY,2)- y;y - 2 (/Vu+ 3) ( 
1-B + i+B 

- - rl r’t 1 

2 
r1,2 = 

(1 f BY 
Xl2 - (p & 1) x1 (/3X2 - 1/3X3) + 

(0” -I- 3;x22 + -w) 

and the Lagrange solution (1.3) is of the form 

Xi” = 1, X,” = I&, X,” = 0 
Y,” == 0, Y,O = 0, Y,” = a / 2 

(1. 6) 

As in [l, 21, we assume the constant Lagrange solution to be stable, if in the 
perturbed motion the triangle formed by points A,, A,, A,, always deviates as little 

as desired from the initial equilateral form. In such formulation the problem of tne 

Lagrange solution stability is equivalent to that of stability of the equilibrium position 
(1.6) of system (1.4) with respect to perturbations of coordinates and momenta. 

Routh and Joukowskii [3] obtained the necessary conditions of the Lagrange solution 
stability in the case of an arbitrary power law of attraction. It was shown in [4] 
that these necessary conditions are not sufficient; instability was proved in the case of 

certain values of parameters. 
The contemporary development of the theory of stability of Hamiltonian systems 

enables us to analyze more fully the stability of the Lagrange solutions of the classic 

plane circular unrestricted three-body problem. And this is the aim of the present wxk. 

2. We determine the perturbed motion in the neighborhood of the equilibrium 

position (1.6) using the coordinates Qi and momenta Pi defined by formulas 

Xi = Xi” + Qi, Yi = Yi” + Pi (i = 1, 2, 3) (2.1) 

We represent the Hamiltonian (1.5) in the form of series 

K=K,-i . ..-tK.+ . . . (2.2) 

where K, is a homogeneous polynomial of power n in Qi and Pi (i = 1, 2, 3). 

The terms of series (2.2) which are subsequently required are of the form 

KS =~P12+~Paa+(~+~jP~a+Q,p,+ 

($ - 1) Qd’3 4 Q1P3 4 (+ + -&au) QI” + 

(a - +a~) QIQ2 .- q aSvQIQ3 + 

( 
aa 

- 2Y -- a + + w) Qs” + q aSrQ~Q3 + ($- - + q) Qs2 

X3 = - + Q1P32 - 2QlQ3P3 - 2 (+ - 1) QlQaP3 - $ Q12P3 - 
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$- Qd'd'3 - + QzQd'z + $ Q2Ps2 + 9 Qa2P3 - 

C (a + i) y 
4 + -&uY(~~ + I,] QI" + [~(W3’ + 9) - 

3 
2a Q12Qa- 1 [ -++ +r (7b2 - 33)] QlQz" - 

9Jf/s 
32 ~PYQI'Qs + q aS~Q1Q2Q3+~ar(11B~-21)x 

Q1Qs2-[ &(~2+3)++~-+J]Q23- 

-+PuQ2Qr [+(B" + 3) -+uy(3 - fJ2)] QaQa'+ 

15 1/3 
- &Q33 8 

& =+Q3'&2+$Q22P32++ Q12Pa2+3Q12Q3P2+ 

3(+ 1)Q12QpP3-t2Q13Ps-$Q~Q3P2Ps+ 

-+ QLQ~P~P~+~Q~Q?Q~P?-~Q~Q~P~~-~ Q1Qs2P3 + 

C $,A++ 37ay (3P2 + 1)lQt-t [2u+& x 2048 

(B" t-75)] Ql"Q2 + +JSY (2582+99)Q18Q3+ 

[ 
3aB 
---(339/32 + 369)] Q12Qz2 - -+&~fiy(25j3~ +3) x 
2Y 256 

Q12QzQ3+ +(3278" + 333)Q12Qs2 + +&(5/l" - 9) x 

Q1Qz3+- i56c3 uj3y (5p2-57)Q1Qa2Q3- +y(19fP- 15)x 

Q1QaQs2++ (337p2+ 252Oy--49)Qz4- 

q c$y(3fi2- 15)Q1Q33-+$y(5~2- 153)Qa3Q3+ 

&64@"+3)+ 105y(5f12 - 9)1Qe2Q32+w afiv x 

(3P - 47) Q2Qs3 - [ $ a (P” + 3) + & ay (13P2 - 17)] Qs4 

The determining equation is of the form 

(a” _1- I)(04 + 02 + k) = 0 (2.3) 

k=?[ a c1 _ u) + c1 _ u)2 *] _ mm + mm + wiml “4’ 
(ml + m2 + md2 

and the necessary condition of stability is 

k<l/4 (2.4) 

The following interpretation of condition (2.5) conforms to [5] (Fig. 2). In the 
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plane of the equilateral triangle A,, As, As to each set of three ml, m,, m3 
corresponds a single point that denotes the system center of mass which lies on the 

circumference of radius p (k) , whose center lies at the triangle geometric center, 
and 

p (k) = PO r/1-4k / 9 (2.5) 

where po is the radius of the circumscribed circle. The position of the center of 
mass in one of the three regions outside the circle of radius 

Fig. 2 Fig. 3 

P* ’ where 

P* = P (r/4) = po l/s/s 

corresponds in Fig. 2 to condition (2.4). 
Parameter a is proportional to the distance from the center of mass to the straight 

line AI& and a = 1 corresponds to the position of the center of mass at point 

A3 (i.e. m, ='m2 = 0). 
The canonical linear normalizing transform 

(Ql, Qs, Qsr PI, J’s, Ps) = (Qr*, Qs*r Qs*, PI*, J's*, P,*)N 

is obtained with the use of the algorithm set forth in [S]. For the rows Ni of the 

simplistic Matrix N we obtain the expressions 

B (a m! v)2 xi v Y-- 2 9, - 9y 
1 

Ns+j = +-J,-+-+, $,4++-+, 

- -+(a-+ v)) 
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c,i ‘j 2 = -2- fa.+y)(;-l,2)Xj ’ 3cj = 9U + 9y + 4.hj2 (j = 2,3) 

The Hamiltonian (2.2) in terms of variables Qi*, Pi* (i = 1, 2, 3) is of the 
form 

K* =~(Q:‘+P~)+~(Q:‘+p:‘)+~(Q:‘+Pi)+... 

+ K,* -j- . . . 

We pass to “polar” coordinates using formulas 

Qi* = JJ’?& sin rpi, Pi* = ]fG cos cpi (i = 1, 2, 3) 

and obtain 

K* = h,r, + h2rz + h3rS + . . . . -i- K,* -k . + - (2.6) 

where K,* is a function homogeneous with respect to rf (i = 1, 2, 3) of order 

n/2. 

3. For the investigation of stability we carry out further (nonlinear) normalization 
of the system with Hamiltonian (2. S), essentially following the investigation scheme 
presented in [S]. 

The process of nonlinear normalization depends to a considerable extent on the 
presence in the system of resonances, i. e. of relations of the form 

n,& + F&4 + rQk4 = 0 (3.4 

where nl, rzs, n3 are integers. The quantity 1 nl { -k 1 n2 1 -k 1 ns 1 is called 
the order of a resonance. When resonances up to fourth order are absent, the 

Hamiltonian (2.6) can be brought to the form 

K* = K,* i_ fi,* + . . . (3.2) 

K,” = W, -I- h,R, i- A3R3 

li’d* = c,M,R~~ Jr c,,oR,R, + c,r,~R,& + c02oR2~ -I- co182R3 i 

by the canonical nonlinear transformation (Pi, Ti + dtti, Ri ii = 1, 2, 3) , with 
the coefficients of form K** dependent on the problem parameters k and cz but 
independent of the method of reducing the Hamiltonian to the normal form (3.2). 

In the linear stability region of this problem the following resonance relations of 

up to fourth order are possible: 

h, + 2h3 = 0, k = k, = 0.1875 (3.3) 
It, + 2& = 0, k = k, = 0.16 
A, i- 3h, = 0, k = k, = 8181 = 0.09876 . . . 
A, + 3h, = 0, k = k, = 0.09 
A, - 2x, _ A3 = 0, k = k, = 0.2304 

The curves along which the resonance relations (3.3) are satisfied are shown in 
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Fig. 3 for one of the three symmetric regions appearing in Fig. 2. Since frequencies 
Ai (i = 1, 2, 3) depend only on parameter k , these curves are arcs of circles of 
radii pj == f-’ (k_j) (j = 1, . . . ,5) calculated by formula (2.5). 

The Arnol’d - Moser theorem [7] holds for the canonical system with Hamiltonian 
(3.2); if at least one of the determinants 

(3.4) 

is nonzero, the equilibrium position is stable for the majority of initial conditions. 
Coefficients of the normal form (3.2) and determinants (3.4) were computed out- 

side of resonance curves (3.3) on a computer using the algorithms presented in the 
paper of A. P. Markeev and A. G. Sokol’skii under the title: Certain computing 
algorithms of Hamiltonian systems normalization (preprint of the Inst. of Problems of 

Mechanics, No. 31, 1976). The closed curve 1 in Fig.3 represents points at which 
D, = 0; inside that curve D, < 0 and outside it D, > 0. As shown by the 

computations, D, # 0 at all points of that curve, hence for all k < 0.25, except 

for k=ki (i = 1,. . .,5), we have stability for the majority of initial conditions, 

4. One more type of stability, viz. formal stability [S], which means that instabil- 
ity cannot be detected by taking into account any finite number of terms of expansion 
of the Hamiltonian is considered here. 

For a system with Hamiltonian (3.2) formal stability occurs when the system [6] 

K,* = 0, Ka* =0 

has no nontrivial solutions in the region Ri > 0 (i = 1, 2, 3) . Since hr > 0, 

h, > 0, A, < 0, hence the form 

K4* (RI, K2, - + R, - + Rz) = AR12 + BRIR:! + CR,’ (4.1) 
:, 3 

AEc ‘I J2 
200 - h3 Cl01 -I- - Coo27 

L J.22 
a32 

C=C 020 - h3 co11 + - GxJ2 
hi= 

B = cll,, - + cm - +-cool + 2 +$ coo2 
‘B 3 3 

of fixed sign in region R,>O, &>O. Thisispossibleif Ba- 4AC< 

0 or A, B, and C are of the same sign. It can be ascertained that 

B2 - 4AC = ?q2D, 

hence inside curve _7 (Fig. 3) we hdve formal stability, while for form (4.1) to be of 
fixed sign outside it, it is necessary that A, B, C are of the same sign. The results 
of numerical analysis appear in Fig.3. Formal stability exists in the shaded regions, 

except on resonance curves. 

5. Let us investigate stability of equilibrium position (1.6) of system (1.4) in the 
resonance cases (3.3). 

We begin by considering the first four cases of (3.3) for which in formulas (3. 1) 
ni > 0 (i = 1, 2, 3). If n, + n2 + n3 = 3, the normal form of Hamiltonian 
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(2.6) is 
K* = K2” + a nlntnl sin (n&b + nzffjz + n&D,) R~a~~/2R~‘z + . . . (5.1) 

where K,* is of the form (3.2). If a,&,, # 0, the equilibrium position is Liapunov 
unstable. 

computations have shown that alaa # 0 when k = k, and aare # 0 when 
k = ks for ali cz from the region of linear s~bi~~, hence when k = kl and 
k = k, the equilibrium position (1.6) is Liapunov unstable. 

when relations (3.1) for n, + n, + n, = 4 are satisfied, the normal form of 

Hamiltonian (2.6) is 

K* = G* + W (RI, Rs, Ra) % ontnzn, sin (nr% + 

n.$& -+- n3fD3) R~~‘R~j~R~~~ + , . . 

where K,* is of the form (3.2) and W (R,, R,, R3) is the quadratic form of RI, 
R,, &. If 

I %npno 1 (n:lnt?nT)2/z > 1 W (nl, n2, n3) 1 (5.2) 

the equi~b~um position is Liapunov unstable, while when the inequa~ty is of the 
opposite sign, we have stability of the “truncated” system. 

Numerical analysis has shown that for resonances determined by the third and fourth 
system of equalities (3.3), the inequality (5.2) is valid for aU a from the linear stabil- 
ity region, hence when k = k, and k = Ic, the equilibrium position (I.. 6) is un-- 

stable. 
The last of resonances (3.3) differs from those already considered by that in its 

case a change of sign takes place among some of the numbers nl, n,, n3 . Then the 
system with the Hamiltonian 

K* = K,* + W (R,, R,, R3) + ala1 sin (@r - Z@s - as) X 
R;ixR,R;,a 

reduced to second order terms with respect to Rt (i = 1, 2, 3) has the fixed sign 
integral 

L = 3R, + R, + R3 

However, the effect of taking into account terms of higher order is unknown, since 
when k = k, we have 3LI = 1, A2 = 0.8, 3L3 = -0.6, and the system admits 
besides the indicated resonance, other resonance relations, for instance two resonances 

of fifth order 

hr + ha + 3hs = 0, 2h, - h, + 2hg = 0 

Hence, when k = k, it is possible to assert the stability of the equilibrium 

position (1.6) only when resonances of order not higher than the fourth with respect 
to coordinates and momenta are taken into account. 

The above analysis makes it possible to formulate the basic conclusion as follows. 

III the stability region k < 0.25 in the first approximation of constant Lagrange 
solutions of the plane unrestricted three-body problem there are four curves that 
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correspond to resonance values of parameter k, along which Liapunov instability 
occurs. Along the fifth resonance curve stability of the finite order is present. 

Outside of the five resonance curves in the stability region in the first approxima- 
tion we have stability for the majority of initial conditions. 

Regions in which the constant Lagrange solutions are formally stable have been 
determined in the first approximation stability region. Outside of these regions 
(obviously, inside the first approximation stability region) the presence of formal 
stability of Lagrange solutions can also be confirmed (possibly excluding a finite 
number of curves and points in the parameter plane) by analyzing stability, taking 

into account forms K6 and K, in expansion (2.2) (see [6] ). However such invest- 
igation which takes into account therms of the fifth, sixth, and possibly higher order 
may be omitted, since the described above investigation provides a fairly comprehens- 

ive representation of formal stability of Lagrange solutions. 

The author thanks A. P. Markeev for stating the problem and valuable advice, 
and A. G. Sokol’slcii for constant interest in this work. 
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